3.128 \(\int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=138 \[ \frac{8 a^2 (21 A+19 B) \tan (c+d x)}{105 d \sqrt{a \sec (c+d x)+a}}+\frac{2 (7 A-2 B) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{35 d}+\frac{2 a (21 A+19 B) \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{105 d}+\frac{2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d} \]

[Out]

(8*a^2*(21*A + 19*B)*Tan[c + d*x])/(105*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(21*A + 19*B)*Sqrt[a + a*Sec[c + d*
x]]*Tan[c + d*x])/(105*d) + (2*(7*A - 2*B)*(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(35*d) + (2*B*(a + a*Sec[c
 + d*x])^(5/2)*Tan[c + d*x])/(7*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.297271, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {4010, 4001, 3793, 3792} \[ \frac{8 a^2 (21 A+19 B) \tan (c+d x)}{105 d \sqrt{a \sec (c+d x)+a}}+\frac{2 (7 A-2 B) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{35 d}+\frac{2 a (21 A+19 B) \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{105 d}+\frac{2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]

[Out]

(8*a^2*(21*A + 19*B)*Tan[c + d*x])/(105*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(21*A + 19*B)*Sqrt[a + a*Sec[c + d*
x]]*Tan[c + d*x])/(105*d) + (2*(7*A - 2*B)*(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(35*d) + (2*B*(a + a*Sec[c
 + d*x])^(5/2)*Tan[c + d*x])/(7*a*d)

Rule 4010

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), I
nt[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Free
Q[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3793

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[(a*(2*m - 1))/m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x
], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx &=\frac{2 B (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 a d}+\frac{2 \int \sec (c+d x) (a+a \sec (c+d x))^{3/2} \left (\frac{5 a B}{2}+\frac{1}{2} a (7 A-2 B) \sec (c+d x)\right ) \, dx}{7 a}\\ &=\frac{2 (7 A-2 B) (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{35 d}+\frac{2 B (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 a d}+\frac{1}{35} (21 A+19 B) \int \sec (c+d x) (a+a \sec (c+d x))^{3/2} \, dx\\ &=\frac{2 a (21 A+19 B) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{105 d}+\frac{2 (7 A-2 B) (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{35 d}+\frac{2 B (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 a d}+\frac{1}{105} (4 a (21 A+19 B)) \int \sec (c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{8 a^2 (21 A+19 B) \tan (c+d x)}{105 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a (21 A+19 B) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{105 d}+\frac{2 (7 A-2 B) (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{35 d}+\frac{2 B (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 a d}\\ \end{align*}

Mathematica [A]  time = 0.38045, size = 82, normalized size = 0.59 \[ \frac{2 a^2 \tan (c+d x) \left (3 (7 A+13 B) \sec ^2(c+d x)+(63 A+52 B) \sec (c+d x)+2 (63 A+52 B)+15 B \sec ^3(c+d x)\right )}{105 d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]

[Out]

(2*a^2*(2*(63*A + 52*B) + (63*A + 52*B)*Sec[c + d*x] + 3*(7*A + 13*B)*Sec[c + d*x]^2 + 15*B*Sec[c + d*x]^3)*Ta
n[c + d*x])/(105*d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.241, size = 117, normalized size = 0.9 \begin{align*} -{\frac{2\,a \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( 126\,A \left ( \cos \left ( dx+c \right ) \right ) ^{3}+104\,B \left ( \cos \left ( dx+c \right ) \right ) ^{3}+63\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+52\,B \left ( \cos \left ( dx+c \right ) \right ) ^{2}+21\,A\cos \left ( dx+c \right ) +39\,B\cos \left ( dx+c \right ) +15\,B \right ) }{105\,d \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x)

[Out]

-2/105/d*a*(-1+cos(d*x+c))*(126*A*cos(d*x+c)^3+104*B*cos(d*x+c)^3+63*A*cos(d*x+c)^2+52*B*cos(d*x+c)^2+21*A*cos
(d*x+c)+39*B*cos(d*x+c)+15*B)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/cos(d*x+c)^3/sin(d*x+c)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.47617, size = 279, normalized size = 2.02 \begin{align*} \frac{2 \,{\left (2 \,{\left (63 \, A + 52 \, B\right )} a \cos \left (d x + c\right )^{3} +{\left (63 \, A + 52 \, B\right )} a \cos \left (d x + c\right )^{2} + 3 \,{\left (7 \, A + 13 \, B\right )} a \cos \left (d x + c\right ) + 15 \, B a\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \,{\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

2/105*(2*(63*A + 52*B)*a*cos(d*x + c)^3 + (63*A + 52*B)*a*cos(d*x + c)^2 + 3*(7*A + 13*B)*a*cos(d*x + c) + 15*
B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 5.00943, size = 300, normalized size = 2.17 \begin{align*} -\frac{4 \,{\left (105 \, \sqrt{2} A a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) + 105 \, \sqrt{2} B a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) -{\left (210 \, \sqrt{2} A a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) + 140 \, \sqrt{2} B a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) -{\left (147 \, \sqrt{2} A a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) + 133 \, \sqrt{2} B a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) - 2 \,{\left (21 \, \sqrt{2} A a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) + 19 \, \sqrt{2} B a^{5} \mathrm{sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{105 \,{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )}^{3} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

-4/105*(105*sqrt(2)*A*a^5*sgn(cos(d*x + c)) + 105*sqrt(2)*B*a^5*sgn(cos(d*x + c)) - (210*sqrt(2)*A*a^5*sgn(cos
(d*x + c)) + 140*sqrt(2)*B*a^5*sgn(cos(d*x + c)) - (147*sqrt(2)*A*a^5*sgn(cos(d*x + c)) + 133*sqrt(2)*B*a^5*sg
n(cos(d*x + c)) - 2*(21*sqrt(2)*A*a^5*sgn(cos(d*x + c)) + 19*sqrt(2)*B*a^5*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/
2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^3
*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*d)